-continued

```
<210> SEQ ID NO 18
<211> LENGTH: 40
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 18
cttacgacct taagtggggt tcgggtggag tttatggggt
                                                                         40
<210> SEQ ID NO 19
<211> LENGTH: 34
<212> TYPE: DNA
<213 > ORGANISM: Artificial sequence
<220> FEATURE:
<223 > OTHER INFORMATION: oligonucleotide
<400> SEQUENCE: 19
accttaagtg gggttcgggt ggagtttatg gggt
                                                                         34
```

What is claimed is:

- 1. An electrochemical aptamer-based (E-AB) sensor comprising a structure-switching cross-reactive aptamer and an electrode, the structure-switching cross-reactive aptamer being conjugated to the surface of the electrode, the structure-switching cross-reactive aptamer comprising SEQ ID 30 No: 19.
- 2. The E-AB sensor according to claim 1, the electrode being a gold electrode.
- 3. The E-AB sensor according to claim 1, the structure-switching cross-reactive aptamer being labeled with a thiol 35 group at 5' end, and methylene blue redox tag at 3'end.
- **4**. The E-AB sensor according to claim **1**, further comprising a backfiller selected from 6-mercapto-1-hexanol (MCH), dithiothreitol (DTT), and combination thereof.
- 5. The E-AB sensor according to claim 1, further comprising a sensor buffer comprising Mg²⁺ and/or Na⁺.
- **6.** The E-AB sensor according to claim **1**, the structure-switching cross-reactive aptamer having SEQ ID NO: 18 or 19.
- 7. A method for detecting one or more synthetic cathinones in a sample comprising contacting the sample with the
 E-AB sensor according to claim 1, and detecting one or
 more synthetic cathinones in the sample by measuring a
 current generated upon binding of synthetic cathinones to
 the E-AB sensor.
- **8**. The method according to claim **7**, the sample being a biological sample or an environmental sample.
- **9**. The method according to claim **7**, the sample being a seized sample.

10. The method according to claim 1, the biological sample being selected from blood, plasma, urine, tears, sweat, and saliva.

46

- 11. The method according to claim 7, the one or more synthetic cathinones being selected from 3,4-methylenedioxypyrovalerone (MDPV), α-PVP, pyrovalerone, methylone, pentylone, 3,4-methylenedioxy-α-pyrrolidinobutiophemephedrone, none (MDPBP), 4-methyl- α pyrrolidinobutiophenone (MPBP), 4'-methvl-αnaphyrone, pyrrolidinohexanophenone (MPHP), methedrone, ethylone, butylone, 4-methylmethcathinone (4-MMC), 4-fluoromethcathinone (4-FMC), 3-FMC, methcathinone, and 4-methyl-α-pyrrolidinobutiophenone (MEPBP).
- 12. The E-AB sensor according to claim 1, the structureswitching cross-reactive aptamer being modified with a linker.
- 13. The E-AB sensor according to claim 12, the linker having from 1 to 10 carbons.
- **14**. The E-AB sensor according to claim **13**, the linker having 6 or 7 carbons.
- 15. The E-AB sensor according to claim 1, the structureswitching cross-reactive aptamer being conjugated to the electrode via a functional group.
- 16. The E-AB sensor according to claim 15, the functional group being selected from thiol, amide, ester, alkenyl, alkynyl, carbonyl, aldehyde, carboxylate, carboxyl, and carbonate ester groups.
- 17. The E-AB sensor according to claim 1, the electrode being made of gold, silver, or platinum.

* * * * *